

НПП «ЭЛАР»

МАТРИЧНЫЙ ФПЗС ELCM1079

ОТЛИЧИТЕЛЬНЫЕ ОСОБЕННОСТИ

Число элементов 578×578
Фоточувствительная область 12,72×12,72 мм²
Высокий динамический диапазон
Низкий темновой ток
Широкий спектральный диапазон
Высокая УВ чувствительность

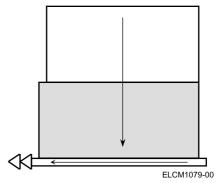


Рис. 1. Организация прибора

ОБЩЕЕ ОПИСАНИЕ

ELCM1079 представляет собой матричный прибор с зарядовой связью с кадровым переносом. Прибор предназначен для применений, требующих широкого спектрального диапазона, высокой геометрической точности и низкого шума считывания.

УСТРОЙСТВО ПРИБОРА

 Φ ПЗС имеет скрытый канал переноса n-типа и содержит секцию накопления (578 строк по 578 элементов размером 22×22 мкм) и секцию памяти (578 строк по 584 элемента), содержащей 6 дополнительных столбцов со стороны выходного устройства. К секции памяти примыкает горизонтальный регистр считывания (584 активных и 8 "холостых" со стороны выходного устройства).

Секция памяти защищена от света. Секция накопления выполнена с двумя поликремниевыми электродами и "виртуальной" фазой, секция памяти и регистр имеют трехфазное управление.

Выходное устройство с плавающей диффузионной областью имеет двухкаскадный истоковый повторитель. Встроенная нагрузка первого каскада может отключаться при работе с большим временем накопления для подавления эффектов, связанных с паразитной генерацией зарядов в стоковых областях транзисторов.

Стоковая имплантированная область, окружающая секции и регистр, предохраняет канал переноса от попадания паразитного заряда с периферии кристалла.

Прибор монтируется в 50-выводный газонаполненный корпус, в котором размещен микрохолодильник Пельтье (термоэлектрическая батарея, ТЭБ) с кристаллом ФПЗС, укреплённым на её холодной грани. Входное окно выполняется из оптического кварцевого стекла толщиной 2 мм с показателем преломления 1,486. Для контроля температуры кристалла используется платиновый прецизионный терморезистор Pt-100. Зависимость сопротивления терморезистора от температуры приведена в таблице 4.

Внешний вид и основные размеры корпуса показаны на рис. 9.

РАБОТА ПРИБОРА

Изображение проецируется на фоточувствительную область прибора (секцию накопления), где фотогенерированные заряды накапливаются в течение промежутка времени, называемого временем накопления. Затем происходит быстрый перенос накопленного заряда из секции накопления в секцию памяти, а затем, во время следующего периода накопления,

построчный перенос заряда из секции памяти в считывающий регистр и его последовательный перенос в выходное устройство.

Типовая спектральная характеристика прибора приведена на рис. 2.

Временные диаграммы работы прибора приведены на рис. 4-7.

Основные фотоэлектрические параметры ELCM1079 приведены в табл. 1. В номинальном режиме на электроды прибора подаются напряжения в соответствии с табл. 2.

ТЕХНИЧЕСКИЕ ДАННЫЕ

ОСНОВНЫЕ ФОТОЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ

Табл. 1

Параметр	не менее	тип.	не более
Сигнал насыщения, В	1,2	1,4	
Заряд насыщения, тыс. эл.	220	250	
Среднеквадратическая неравномерность чувствительности, %		1,2	2
Средневыборочная неравномерность чувствительности по подмассиву 8×8 элементов, %		1,0	1,5
Темновой сигнал, эл./яч./с		5	10
Неэффективность переноса (по любому из направлений)		1×10 ⁻⁵	3×10 ⁻⁵
Шум считывания, эл. rms		15	24
Квантовая эффективность на длине волны, %:			
250 нм	25	30	
400 нм	40	50	
700 нм	55	60	
1000 нм	8	10	

Условия измерения параметров:

- частота считывания 5 МГц;
- сопротивление нагрузки в цепи OS 3 кОм;
- сопротивление в цепи LS 10 кОм;
- источник света вольфрамовая лампа накаливания с цветовой температурой 2856±20 K;
- температура кристалла –35°С.

Примечание:

1. Среднеквадратическая и средневыборочная неравномерности чувствительности измеряются за набором светофильтров C3C-23 (2 мм) + C3C-25 (1 мм),

ред.: 1.1, 04.04.08 лист 2/9 194223, РФ, Санкт-Петербург, пр. М.Тореза, 68 тел. (812) 552-57-54, 552-20-69, факс (812) 552-28-76, e-mail mail@npp-elar.ru

ТИПОВОЙ ЭЛЕКТРИЧЕСКИЙ РЕЖИМ

(все напряжения измерены относительно подложки VSS)

Табл. 2

Параметр	Обозначение	Значение		
	Ооозначение	мин.	тип.	макс.
Верхний уровень импульсов секции накопления, В	VSH	0	+3	+6
Нижний уровень импульсов секции накопления, В	VSL	-12	-9	-5
Верхний уровень импульсов секции памяти, В	VMH	+3	+5	+7
Нижний уровень импульсов секции памяти, В	VML	-12	-9	-7
Верхний уровень импульсов регистра, В	VHH	+3	+5	+7
Нижний уровень импульсов регистра, В	VHL	-9	-7	-5
Верхний уровень импульсов сброса, В	RGH	+3	+5	+7
Нижний уровень импульсов сброса, В	RGL	-9	-6	-5
Напряжение стока транзистора сброса, В	VRD	+9	+11	+15
Напряжение стока периферийного заряда, В	VPD	+10	+12	+22
Напряжение стоков выходных транзисторов, В	VDD	+16	+18	+22
Сопротивление нагрузки выходного устройства, кОм	RLos	1,5	3	10
Сопротивление в цепи нагрузочного транзистора, кОм	R _{LS}	0	10	15

ПРЕДУПРЕЖДЕНИЯ:

- 1. В приборе не предусмотрены средства защиты от статического электричества; при работе необходимо принимать меры антистатической защиты.
- 2. Запрещается подавать какие-либо напряжения на выводы прибора, не используемые согласно принципиальной схеме.

РЕКОМЕНДАЦИИ:

- 1. Для уменьшения генерации паразитного заряда рекомендуется отключать исток нагрузочного транзистора LS выходного устройства во время экспозиции.
- 2. Режим питания микрохолодильника приводится в паспорте прибора.

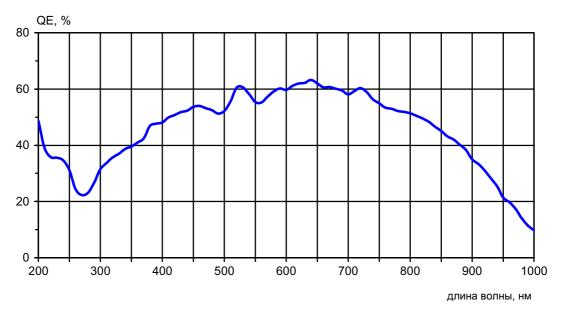


Рис. 2. Типовая спектральная характеристика

ред.: 1.1, 04.04.08 лист 3/9

НПП «ЭЛАР» ФПЗС ELCM1079

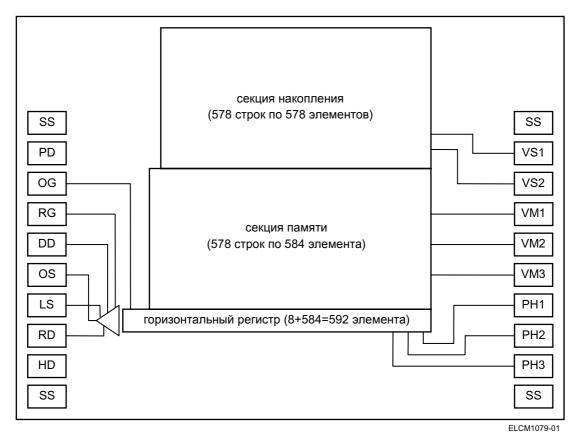


Рис. 3. Электрическая схема кристалла прибора

НАЗНАЧЕНИЕ ВЫВОДОВ

Табл. 3

Nº	Назначение	Nº	Назначение	
1, 2	анод термобатареи, +РТ	26, 27	вывод термодатчика Pt-100, TS2	
3, 4, 6	свободный	28	свободный	
5, 7	подложка, SS	29	подложка, SS	
8-10	свободный	30	3 фаза регистра, РН3	
11, 12	подложка, SS	31	2 фаза регистра, РН2	
13	периферийный сток секций, PD	32	1 фаза регистра, РН1	
14	стоки транзисторов вых. устройства, DD	33	свободный	
15	исток выходного транзистора, OS	34	3 фаза секции памяти, VM3	
16	исток нагрузочного транзистора, LS	35	2 фаза секции памяти, VM2	
17	сток транзистора сброса, RD	36	1 фаза секции памяти, VM1	
18	свободный	37	2 фаза секции накопления, VS2	
19	затвор транзистора сброса, RG	38	1 фаза секции накопления, VS1	
20	разделительный электрод регистра, ОG	39, 40	подложка, SS	
21	периферийный сток регистра, HD	41-43, 45	свободный	
22	подложка, SS	44, 46	подложка, SS	
23	свободный	47, 48	свободный	
24, 25	вывод термодатчика Pt-100, TS1	49, 50	катод термобатареи, –РТ	

ТЕМПЕРАТУРНАЯ ХАРАКТЕРИСТИКА ТЕРМОРЕЗИСТОРА

Табл. 4

Температура, °С	Сопротивление, Ом	TKC, Om/°C	Температура, °С	Сопротивление, Ом	TKC, Om/°C
– 50	80,31	0,39	+5	101,95	0,39
– 45	82,29	0,39	+10	103,90	0,39
-40	84,27	0,40	+15	105,85	0,39
-35	86,25	0,40	+20	107,79	0,39
-30	88,22	0,40	+25	109,73	0,39
-25	90,19	0,40	+30	111,67	0,39
-20	92,16	0,39	+35	113,61	0,39
–15	94,13	0,39	+40	115,54	0,39
-10	96,09	0,39	+45	117,47	0,39
– 5	98,05	0,39	+50	119,40	0,38
0	100,00	0,39	+55	121,32	0,38

ред.: 1.1, 04.04.08 лист 5/9

ВРЕМЕННЫЕ ДИАГРАММЫ

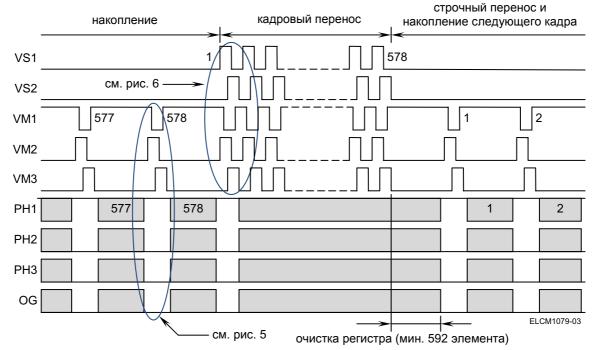


Рис. 4. Кадровая временная диаграмма работы прибора

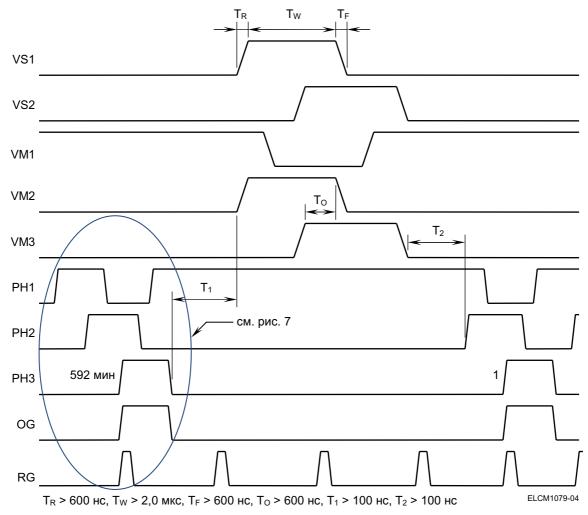
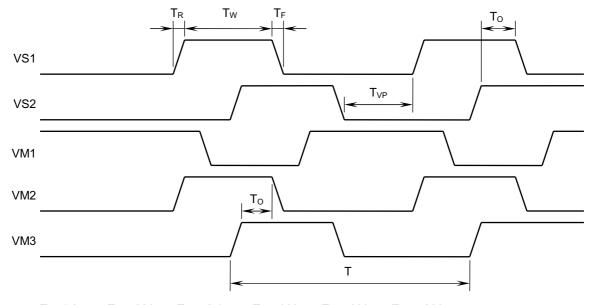



Рис. 5. Временная диаграмма строчного вертикального переноса

НПП «ЭЛАР» ФПЗС ELCM1079

T > 4.0 MKC, $T_R > 600$ Hc, $T_W > 2.0$ MKC, $T_F > 600$ Hc, $T_O > 600$ Hc, $T_{VP} > 600$ Hc

ELCM1079-05

Рис. 6. Временная диаграмма кадрового переноса

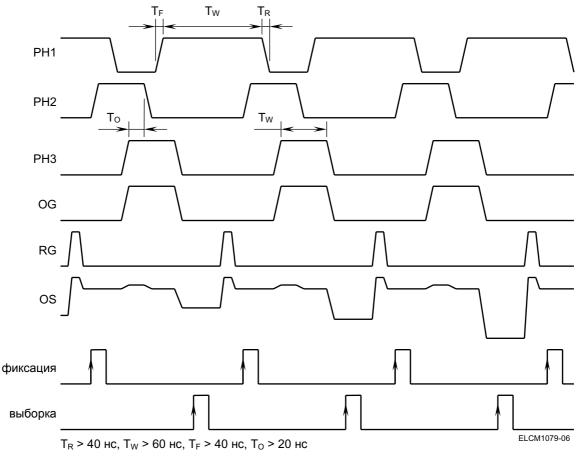


Рис. 7. Временная диаграмма выходного регистра

ФП3C ELCM1079

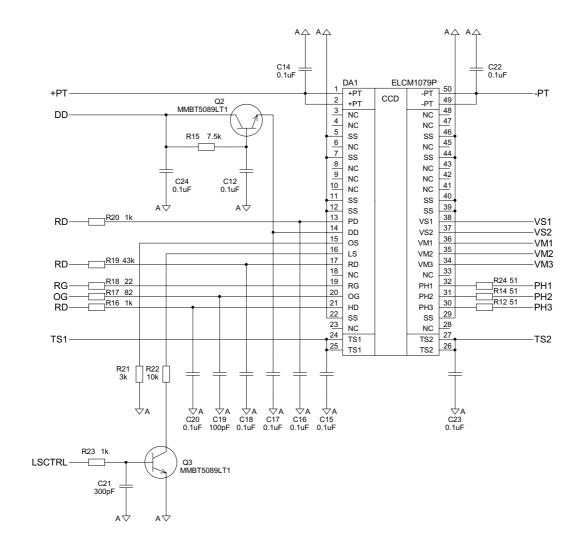


Рис. 8. Рекомендуемая схема включения прибора

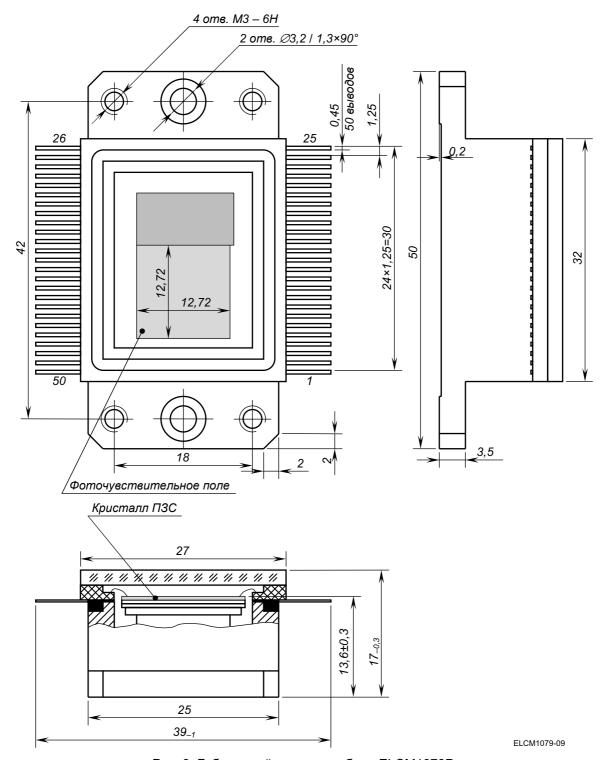


Рис. 9. Габаритный чертеж прибора ELCM1079P